CORRIGÉ DE L'EXAMEN TÉLÉCOMMUNICATIONS FONDAMENTALES

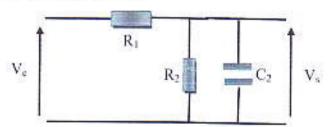
Année Univ	Niveau	Enseignant
2020/2021	2eme Année TLC	Dr. CHAABANE Abdelhalim

Exercice 01: Soit une section cylindre d'un fibre optique constituée de deux couches d'indice n_1 et n_2 . Un rayon lumineux arrive sur la face d'entrée avec un angle d'incidence i.

A. La relation existante entre i, j, n_0 et n_1 est donnée par;

$$n_0 \sin i = n_1 \cos j$$

B. L'expression de i_0 en fonction de n_0 , n_1 et n_2 quand le rayon est à la limite de la réflexion totale en point J est donnée par:


$$i_0 = arcsin\sqrt{(n_1/n_0)^2 - (n_2/n_0)^2}$$

(1)

C. Pour $n_0=1.33$, $n_1=1.4$ et $n_2=1.15$, la valeur de i_0 est :

36.89°

Exercice02 : Un filtre constitué par une résistance R_1 en série avec un ensemble résistorcondensateur (résistance R_2 et capacité C_2).

1. Déterminer la nature du filtre.

Le système se comporte donc comme un filtre passe bas.

2. Donner l'expression de la fonction de transfert $T(j\omega)$ en fonction des composants constituants le circuit.

$$T(j\omega) = \frac{R_2}{R_2 + R_1 + jR_1R_2C_2\omega} = \frac{R_2/(R_1 + R_2)}{1 + jRC_2\omega}$$

(3)

CORRIGÉ DE L'EXAMEN TÉLÉCOMMUNICATIONS FONDAMENTALES

Année Univ	Niveau	Enseignant
2020/2021	2 ^{eme} Année TLC	Dr. CHAABANE Abdelhalim

Exercice03: Soit un signal Q(t) issu d'un modulateur en amplitude à porteuse supprimée, tel que Q(t): $Q(t) = V_m V_p sin\left(\frac{n}{2} - 2\pi f_m t\right) cos\left(2\pi f_p t\right)$

A. En utilisant un démodulateur synchrone pour la récupération du signal d'information, l'expression de $m(t)=Q(t)\times sin\left(2\pi f_p+\frac{\pi}{2}\right)$ est donnée <u>en fonction de 3</u> composantes par:

$$m(t) = \frac{V_m V_p}{2} cos(2\pi f_m t) + \frac{V_m V_p}{4} \left[cos \left(4\pi f_p t + 2\pi f_m t\right)\right] + \frac{V_m V_p}{4} \left[cos \left(4\pi f_p t - 2\pi f_m t\right)\right]$$

B. Proposer une solution pour récupérer le signal basse fréquence. Quelle sera la composante restante?

Le signal m(t) passe dans un filtre passe bas, ainsi à la sortie du filtre, toutes les composantes de fréquences trop élevées seront supprimées et il ne restera que le signal :

$$g(t) = \frac{V_m V_p}{2} \cos(2\pi f_m t)$$

